MAYBE 1.719 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ LR

mainModule Monad
  ((filterM :: (a  ->  [Bool])  ->  [a ->  [[a]]) :: (a  ->  [Bool])  ->  [a ->  [[a]])

module Monad where
  import qualified Maybe
import qualified Prelude

  filterM :: Monad a => (b  ->  a Bool ->  [b ->  a [b]
filterM [] return []
filterM p (x : xsp x >>= (\flg ->filterM p xs >>= (\ys ->return ( if flg then x : ys else ys)))


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\ysreturn (if flg then x : ys else ys)

is transformed to
filterM0 flg x ys = return (if flg then x : ys else ys)

The following Lambda expression
\flgfilterM p xs >>= filterM0 flg x

is transformed to
filterM1 p xs x flg = filterM p xs >>= filterM0 flg x



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IFR

mainModule Monad
  ((filterM :: (a  ->  [Bool])  ->  [a ->  [[a]]) :: (a  ->  [Bool])  ->  [a ->  [[a]])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  filterM :: Monad b => (a  ->  b Bool ->  [a ->  b [a]
filterM [] return []
filterM p (x : xsp x >>= filterM1 p xs x

  
filterM0 flg x ys return ( if flg then x : ys else ys)

  
filterM1 p xs x flg filterM p xs >>= filterM0 flg x



If Reductions:
The following If expression
if flg then x : ys else ys

is transformed to
filterM00 x ys True = x : ys
filterM00 x ys False = ys



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
HASKELL
          ↳ BR

mainModule Monad
  ((filterM :: (a  ->  [Bool])  ->  [a ->  [[a]]) :: (a  ->  [Bool])  ->  [a ->  [[a]])

module Monad where
  import qualified Maybe
import qualified Prelude

  filterM :: Monad a => (b  ->  a Bool ->  [b ->  a [b]
filterM [] return []
filterM p (x : xsp x >>= filterM1 p xs x

  
filterM0 flg x ys return (filterM00 x ys flg)

  
filterM00 x ys True x : ys
filterM00 x ys False ys

  
filterM1 p xs x flg filterM p xs >>= filterM0 flg x


module Maybe where
  import qualified Monad
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Monad
  ((filterM :: (a  ->  [Bool])  ->  [a ->  [[a]]) :: (a  ->  [Bool])  ->  [a ->  [[a]])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  filterM :: Monad b => (a  ->  b Bool ->  [a ->  b [a]
filterM vw [] return []
filterM p (x : xsp x >>= filterM1 p xs x

  
filterM0 flg x ys return (filterM00 x ys flg)

  
filterM00 x ys True x : ys
filterM00 x ys False ys

  
filterM1 p xs x flg filterM p xs >>= filterM0 flg x



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ Narrow
                  ↳ Narrow

mainModule Monad
  (filterM :: (a  ->  [Bool])  ->  [a ->  [[a]])

module Monad where
  import qualified Maybe
import qualified Prelude

  filterM :: Monad b => (a  ->  b Bool ->  [a ->  b [a]
filterM vw [] return []
filterM p (x : xsp x >>= filterM1 p xs x

  
filterM0 flg x ys return (filterM00 x ys flg)

  
filterM00 x ys True x : ys
filterM00 x ys False ys

  
filterM1 p xs x flg filterM p xs >>= filterM0 flg x


module Maybe where
  import qualified Monad
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vz80, vz81), vz6, h) → new_psPs(vz81, vz6, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vz710, vz711), vz50, vz40, h) → new_gtGtEs(vz711, vz50, vz40, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(vz3, vz41, vz40, h) → new_filterM(vz3, vz41, h)
new_filterM(vz3, :(vz40, vz41), h) → new_gtGtEs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_psPs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

The TRS R consists of the following rules:

new_psPs1(vz3, vz41, vz40, vz50, vz6, h) → new_psPs2(new_filterM0(vz3, vz41, h), vz50, vz40, vz6, h)
new_filterM00(vz40, vz70, False, h) → vz70
new_psPs2([], vz50, vz40, vz6, h) → new_psPs4(vz6, h)
new_return(vz9, h) → :(vz9, [])
new_gtGtEs2(:(vz710, vz711), vz50, vz40, h) → new_psPs5(new_return(new_filterM00(vz40, vz710, vz50, h), h), new_gtGtEs2(vz711, vz50, vz40, h), h)
new_psPs5(:(vz80, vz81), vz6, h) → :(vz80, new_psPs5(vz81, vz6, h))
new_filterM00(vz40, vz70, True, h) → :(vz40, vz70)
new_psPs4(vz6, h) → vz6
new_gtGtEs1(:(vz50, vz51), vz3, vz41, vz40, h) → new_psPs1(vz3, vz41, vz40, vz50, new_gtGtEs1(vz51, vz3, vz41, vz40, h), h)
new_psPs5([], vz6, h) → vz6
new_psPs3(vz40, vz70, vz50, vz8, vz6, h) → :(new_filterM00(vz40, vz70, vz50, h), new_psPs5(vz8, vz6, h))
new_gtGtEs1([], vz3, vz41, vz40, h) → []
new_psPs2(:(vz70, vz71), vz50, vz40, vz6, h) → new_psPs3(vz40, vz70, vz50, new_psPs4(new_gtGtEs2(vz71, vz50, vz40, h), h), vz6, h)
new_gtGtEs2([], vz50, vz40, h) → []

The set Q consists of the following terms:

new_psPs1(x0, x1, x2, x3, x4, x5)
new_gtGtEs2([], x0, x1, x2)
new_return(x0, x1)
new_psPs5([], x0, x1)
new_gtGtEs1(:(x0, x1), x2, x3, x4, x5)
new_psPs2([], x0, x1, x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5)
new_psPs4(x0, x1)
new_gtGtEs2(:(x0, x1), x2, x3, x4)
new_psPs5(:(x0, x1), x2, x3)
new_psPs2(:(x0, x1), x2, x3, x4, x5)
new_filterM00(x0, x1, True, x2)
new_filterM00(x0, x1, False, x2)
new_gtGtEs1([], x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(vz3, vz41, vz40, h) → new_filterM(vz3, vz41, h)
new_filterM(vz3, :(vz40, vz41), h) → new_gtGtEs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_psPs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

R is empty.
The set Q consists of the following terms:

new_psPs1(x0, x1, x2, x3, x4, x5)
new_gtGtEs2([], x0, x1, x2)
new_return(x0, x1)
new_psPs5([], x0, x1)
new_gtGtEs1(:(x0, x1), x2, x3, x4, x5)
new_psPs2([], x0, x1, x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5)
new_psPs4(x0, x1)
new_gtGtEs2(:(x0, x1), x2, x3, x4)
new_psPs5(:(x0, x1), x2, x3)
new_psPs2(:(x0, x1), x2, x3, x4, x5)
new_filterM00(x0, x1, True, x2)
new_filterM00(x0, x1, False, x2)
new_gtGtEs1([], x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_psPs1(x0, x1, x2, x3, x4, x5)
new_gtGtEs2([], x0, x1, x2)
new_return(x0, x1)
new_psPs5([], x0, x1)
new_gtGtEs1(:(x0, x1), x2, x3, x4, x5)
new_psPs2([], x0, x1, x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5)
new_psPs4(x0, x1)
new_gtGtEs2(:(x0, x1), x2, x3, x4)
new_psPs5(:(x0, x1), x2, x3)
new_psPs2(:(x0, x1), x2, x3, x4, x5)
new_filterM00(x0, x1, True, x2)
new_filterM00(x0, x1, False, x2)
new_gtGtEs1([], x0, x1, x2, x3)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ UsableRulesReductionPairsProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_filterM(vz3, :(vz40, vz41), h) → new_gtGtEs0(vz3, vz41, vz40, h)
new_psPs0(vz3, vz41, vz40, h) → new_filterM(vz3, vz41, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_psPs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

new_filterM(vz3, :(vz40, vz41), h) → new_gtGtEs0(vz3, vz41, vz40, h)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(:(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(new_filterM(x1, x2, x3)) = x1 + x2 + x3   
POL(new_gtGtEs0(x1, x2, x3, x4)) = x1 + 2·x2 + 2·x3 + x4   
POL(new_psPs0(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
QDP
                                    ↳ DependencyGraphProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(vz3, vz41, vz40, h) → new_filterM(vz3, vz41, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_psPs0(vz3, vz41, vz40, h)
new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
QDP
                                        ↳ NonTerminationProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_gtGtEs0(vz3, vz41, vz40, h) → new_gtGtEs0(vz3, vz41, vz40, h)

The TRS R consists of the following rules:none


s = new_gtGtEs0(vz3, vz41, vz40, h) evaluates to t =new_gtGtEs0(vz3, vz41, vz40, h)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_gtGtEs0(vz3, vz41, vz40, h) to new_gtGtEs0(vz3, vz41, vz40, h).




Haskell To QDPs